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Inferência Causal
(orig:Econometria do Setor Público)

2o semestre de 2025
Sextas-feiras de 14:00 a 18:00

Professor: Rafael Terra
Atendimento: agendar horário.

e-mail: rflterra@yahoo.com.br ou rterra@unb.br
Material: SIGAA, Teams e Youtube

1 Objetivos do Curso

O curso de Econometria do Setor Público busca ensinar os métodos quantitativos de
inferência causal. O curso tem um enfoque prático, com uso intensivo do pacote R.

2 Conteúdo

1. Módulo de Revisão de Econometria

(a) Regressão Linear

i. Estimador MQO, Variância do Estimador, Variância Robusta, Endoge-
neidade.

(b) Painel

i. Mínimos Quadrados Empilhados, Efeitos Fixos, Primeiras Diferenças,
Efeitos Aleatórios, Teste de Hausman.

(c) Variáveis Instrumentais

i. Estimador de Variáveis Instrumentais, Mínimos Quadrados em Dois Es-
tágios, Estimador de Wald.

2. Módulo de Avaliação

(a) Modelo estrutural de Roy/Heckman/Borjas: Seleção amostral

i. Descrição da intuição do modelo de Roy e a derivação do modelo eco-
nométrico estrutural de Borjas (usando a estratégia desenvolvida por
Heckman).
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(b) Seminário de alunos - grupo 1: Directed Acyclic Graphs (DAGs) para definir
Structural Causal Models ou Double/debiased machine learning for treat-
ment and structural parameters

(c) Métodos experimentais/Experimentos randomizados

i. Tamanho da amostra, tamanho do efeito e poder do teste.

ii. Desenho de avaliação.

(d) Métodos quase-experimentais: seleção em observáveis

i. Matching e o uso dos propensity scores e regressão com covariadas

ii. Seminário de alunos - grupo 2: Paper empírico que use métodos alter-
nativos baseados COnditional Average Treatment Effect.

iii. Controle sintético

(e) Métodos quase-experimentais: seleção em não-observáveis (Experimentos
Naturais)

i. Método de diferenças em diferenças e suas extensões.

ii. Seminário de alunos - grupo 3:Paper empírico que use Staggered Diffe-
rences in Differences , Synthetic Differences-in-Differences.

iii. Local Average Treatment Effect

iv. Regressão com descontinuidade (RDD).

v. O efeito do tratamento nos quantis. IVQTE

vi. Seminário de alunos - grupo 5: Paper empírico que use Random Causal
Forests ou Paper empírico que use Robust RDD (Cattaneo et al).
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3 Cronograma Aulas

O Cronograma inicial encontra-se na tabela 1.

Tabela 1: Tópicos de aulas
Tópicos Sequência
Aula 1: Estimador MQO, Variância do Estimador, Va-
riância Robusta, Endogeneidade.

25/10

Aula 2: Mínimos Quadrados Empilhados, Efeitos Fixos,
Primeiras Diferenças, Efeitos Aleatórios.

25/10

Prática com R (por vídeo gravado) 25/10
Aula 3: Estimador de Variáveis Instrumentais, Mínimos
Quadrados em Dois Estágios, Estimador de Wald.

01/11

Aula 4: Modelo de Roy/Borjas (Função Controle) 01/11
Aula 5: Experimentos randomizados. 08/11
Aula 6: Tamanho da amostra, tamanho do efeito e poder
do teste.

08/11

Aula 7: Matching e o uso dos propensity scores e regres-
são com covariadas

22/11

Prática com R 22/11
Aula 8: Controle sintético 29/11
Prática com R 29/11
Aula 9: Método de diferenças em diferenças e suas ex-
tensões

06/12

Seminário grupo 1 e Seminário grupo 2 06/12
Aula 10: Local Average Treatment Effect 20/12
Prática com R 20/12
Seminário Grupo 3 e Prática com R 10/01
Aulas 11 e 12: Regressão com descontinuidade (RDD). 17/01
Aula 13: O efeito do tratamento nos quantis. IVQTE 24/01
Seminário Grupos 4 e 5 e Prática com R 31/01
Prática com R 07/02
Entrega da prova 15/02
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4 Requisitos

Os requisitos para acompanhamento ótimo do curso são:

1. Cálculo Básico (funções de várias variáveis, limite e derivada parcial).

2. Álgebra liner Básica (Operações básicas com matrizes, matriz transposta, matriz
quadrada, Identidade, matriz inversa, determinantes).

3. Estatística Básica. Operadores Esperança, Variância e plim. Teorema do Limite
Central, LGN, Consistência e Eficiência dos estimadores, Inferência Estatística.

4. Regressão Simples e Múltipla (com notação matricial).

5. Ter acesso ao software estatístico R.

5 Avaliação

A avaliação será composta de:

• Três listas de exercícios: 40% +10%

• Seminários (grupos de + ou - 3 alunos): 20% da nota

• Uma Prova –take-home: 30% da nota

O aluno que zerar algum item da avaliação ficará com zero de média. Ausência de
alguma das avaliações requer atestado médico.
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